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Abstract

This paper describes in detail the weighting for the 2004 Living Standards Survey
(LSS) and the method of estimating the sampling errors.

The early versions of this paper were written as proposals for weighting. In par-
ticular, how to account for the different sampling schemes for the primary sampling
units; how to estimate the Economic Family Units; what auxiliary data to use for
calibration.

As in usual in a complex survey, the choice of estimation and variance estimation
was an iterative process. The final decision was made by the author and some of
the LSS team: John Jensen, Sathi Sathiyandra and Matt Spittal.

This version of the paper documents the final estimation method, but also gives
the intermediate steps leading to the final method.
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1 Design Weights

The approach to calculating the sample design weights for the LSS is as follows.

The major issue was how to deal with nonresponse and the initial approach required
knowing which households belonged to the second stage cluster (half AU map). The
adopted approach does not need that information.

The sample design weights are (ignoring nonresponse) the inverse of the probabilities
of selection. These weights are often called simple expansion weights or rate-up weights.
Since this is a multistage design, it is usual to calculate the conditional probabilities of
selection at each stage.

The population was stratified into 54 TNS regions and the sample size was allocated
proportional to the population in the TNS region. The number of AUs sampled in each
region was calculated using the expected number of interviews.

1.1 1st stage: selecting Area Units

The primary sampling units (psus) in this design are Area Units (AUs). The initial
selection of AUs were by mistake selected systematic probability proportional to size
without replacement (sppswor). Interviewing had taken place in 77 of these before this was
realized. Interviewing continued in these and they were considered to be self-representing
psus: i.e. selected with probability 1. This is some what contentious since it is usual to
make psus self-representing based on their special characteristics. These AUs were in the
main confined to major urban areas, where many AUs would be selected. So the impact
on the overall design was not thought to be great.1

A further 445 AUs were selected from the remaining AUs simple random sample with-
out replacement (srswor). Note that the overall sampling fraction of AUs (521 from 1678)
is very high.

Let nh be the number of AUs selected srswor in the TNS region h. Let Nh be the
total number of AUs in region h less the AUs selected by systematic ppswor. Probability
of selecting the ith AU is:

πhi =
nh

Nh

.

1.2 2nd stage: selecting cluster of dwellings

The secondary sampling units (ssus) are implicitly defined clusters of dwellings inside the
AUs. It would be more usual to choose meshblocks as ssus. However, TNS did not have

1Discussions with Robert Templeton of MSD, who has been investigating the weighting of this and
the last survey, suggests that in retrospect it may have been better to treat them as if they had been
selected srswor, as it seems that the mean square error of the estimates under this assumption are a little
less than the mean square error for estimates finally produced.
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meshblock maps so split the AU in half and then took a random start point in each half
and then selected every kth dwelling. This procedure ensures that the two implicitly
defined clusters are geographically separated and in particular do not overlap.

Suppose there are Mhi dwellings in the ith sampled AU. Suppose at the random start
point in each half AU a sample of mhi dwellings is taken systematically using a sampling
interval of 1 in k. Then at each start point this defines an implicit cluster of size k×mhi,
of which 1 in k are sampled. So there are Mhi/(k ×mhi) such clusters in the AU, and 2
of them are taken. So the probability of selecting the jth cluster is:

πj|hi =
2

Mhi/(k ×mhi)
.

Note that in the AUs selected sppswor k = 5 and mhi = 10 and in the AUs selected
srswor k = 3 and mhi = 7.

1.3 3rd stage: selecting dwellings

Clearly the probability of selecting the kth dwelling is the sampling interval 1 in k, i.e.

πk|jhi =
1

k
.

It is at this point that the first nonresponse adjustment is carried out (of course the
calibration will be another nonresponse adjustment). Suppose instead of 7 responding
dwellings there are 6. Then the 1 in 3 sampling interval is adjusted by the fraction 6/7.
It is clear that the dwellings belonging to this cluster need to be known.

This is a common approach (particularly if nonresponse is low and no calibration to
population totals is being done) to ensure that the sample design weights estimate the
the population total closely. (If nonresponse is ignored then the sum of the sample design
weights will be considerably less than the population total.)

However, doing the adjustment are the 2nd stage cluster level has pros and cons. The
pro is principally that this adjustment to the weight is (implicitly) like substituting the
mean of the other responses in the cluster for the nonrespondent and hence if the clusters
are reasonably homogeneous, substituting like for like. The con is that the sample size
at this level is small so that estimate of the mean is not so accurate and more variability
is introduced to the estimator. It might be better to average over a larger number of
observations. For example, SNZ does this sort of adjustment in most of its household
surveys, but the smoothing is often done at the stratum or higher level.

So, the obvious modification to make is to do this adjustment not at the 2nd stage
cluster level but at the 1st stage cluster level (AU). For that only the response rate only
needs to be known at the AU level. This information TNS has supplied.

There is an additional small technical point. TNS selected in some AUs additional
dwellings when the nonresponse was high. It could be assumed that they were selecting off
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a substitute list of dwellings which was predetermined before the main list was interviewed.
(This is so because the main list was chosen as a 1 in 3 sample and the substitute list
was another 1 in 3 sample). Hence the sampling for the dwelling is still a 1 in 3 sample
and if the dwelling nonresponds, a substitute household is taken which carries the original
households selection probability.

1.4 4th stage: selecting adult or Economic Family Unit

Sampling unit individual who defines Economic Family Unit (EFU).

1.4.1 Selecting an adult

Clearly if there are phijkl adults in the lth household then the probability of selection for
an adult is

πl|kjhi =
1

phijkl

.

1.4.2 Selecting an EFU

If there are ehijkl estimated EFUs in the lth household (estimated because not all of them
can necessarily be determined e.g. under 18 year olds with independent income; however,
there will be few such EFUs so this bias is ignorable.)

πl|kjhi =
1

ehijkl

.

2 Controlling for size of Area Units

It is usual when the psus (AUs in this case) are selected srswor and a constant sample
size is selected in each psu to use ratio estimation to control for the size of the psu and
the variability in the overall rate-up weights. See for example Cochran (1977) Chapter 11
and page 303 in particular.

This approach is necessary in the LSS design because as Table 1 indicates, the estimate
of number of occupied dwellings in each of the TNS regions based on the sample of AUs
is typically very different from the Census counts. In particular in the major urban areas
the estimated number of dwellings is on the low side, whereas in the remaining areas
it is one the high side. The situation is probably worse than that depicted in Table 1
since there has been a substantial population increase in major urban areas, especially
Auckland, since the 2001 Census.

Recall that 445 AUs were sampled srswor so that it is to be expected that the average
size of AUs sampled to be very close to the average size of all AUs excluding the ones
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Table 1: Comparison of estimated number of occupied dwellings and actual number on
Census night 2001 in TNS regions for Area Units excluding those selected sppswor.

sample Census
estimate

Ashburton 15807.00 9327
Auckland Rural 55616.40 39234
Blenheim 22452.75 15639
Cambridge Zone 7035.00 5181
Central Auckland Zone 126263.00 122325
Christchurch 115357.57 120576
Christchurch Rural 28266.86 23682
Dunedin 37716.67 38343
Dunedin Rural 29513.25 21318
Fielding 8662.50 5061
Gisborne 2895.00 8376
Gisborne Rural 3990.00 7293
Gore 3834.00 4860
Greymouth 22011.00 9945
Hamilton Rural 59567.14 47373
Hamilton Zone 39019.89 41847
Hastings Zone 23214.60 18648
Hawera 5701.50 4131
Invercargill 17316.00 16719
Invercargill Rural 4560.00 11463
Kapiti 24876.00 15363
Levin 5121.00 7380
Lower Hutt Zone 37674.00 33846
Masterton 11103.43 10905
Napier Hastings Rural 2132.00 5142
Napier Zone 15600.00 13284
Nelson 12789.00 15939
Nelson Rural 19786.00 15405
New Plymouth 10143.00 16227
New Plymouth Rural 26160.00 16317
Northern Auckland Zone 61776.82 64302
Oamaru 10417.50 8664
Palmerston North 24183.00 24366
Palmerston North Rural 38994.33 26937
Porirua Zone 12474.00 12906
Pukekohe 12024.00 6387
Rotorua 15574.00 17412
Rotorua Rural 2250.00 3249
Southern Auckland Zone 92413.79 92880
Taupo 19668.00 14952
Tauranga 33462.00 31551
Tauranga Rural 10398.00 11307
Te Awamutu Zone 3945.00 5013
Timaru 44370.00 18831
Tokoroa 5475.00 4872
Upper Hutt Zone 13623.00 11742
Wanganui 22250.00 14172
Wanganui Rural 4452.00 3096
Wellington Rural 1386.00 2436
Wellington Zone 53387.84 59649
Western Auckland Zone 47909.05 48627
Whakatane 32786.00 17079
Whangarei 20773.67 16464
Whangarei Rural 39081.82 34599
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selected sppswor. However as the summary statistics below indicate, the sampled AUs
are consistently larger than expected. Note that the standard error on the mean for the
sampled AUs is about 20.

Number of occupied dwellings

Sampled srswor AUs

Min. 1st Qu. Median Mean 3rd Qu. Max.

51.0 516.0 963.0 975.8 1356.0 3261.0

All AUs excluding those selected sppswor

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0 219.0 663.0 735.7 1148.0 3261.0

The ratio estimation at the first stage means replacing the rate-up estimator

Ŷh =
∑

i

Ŷhi

πhi

,

where Ŷhi is the estimate of the total for psu i in TNS region h, and πhi = nh

Nh
, with the

estimator

Ŷ R
h =

∑
Nh

Mhi∑
i

Mhi

πhi

∑
i

Ŷhi

πhi

,

or since is πhi = Nh/nh for all psus in region h,

Ŷ R
h =

∑
Nh

Mhi

Nh

nh

∑
i Mhi

Nh

nh

∑
i

Ŷhi =

∑
Nh

Mhi∑
i Mhi

∑
i

Ŷhi.

I.e. the inclusion probabilities are constant within stratum so they cancel. In effect, the
sampling estimates of the total number of dwellings

∑
i

Mhi

πhi
, are being compared with the

actual number
∑

Nh
Mhi and adjusting for any miscount.

Note that Ŷ R
h uses the rate-up estimator at all stages subsequent to the first, i.e. Ŷhi

is just the rate-up estimator using the conditional selection probabilities at the 2nd and
subsequent stages.

Note also that in the language of theory of ratio estimators for stratified samples this
is a separate ratio estimator (one for each stratum) rather than a combined one (summed
over all strata). This is justifiable because the variability in AU size is considerable across
TNS Regions.

The impact of using this ratio estimator is beneficial. Firstly the estimate of Census
night dwellings is much closer to the actual value. Using the rate-up estimator at the
first stage gives an estimate of 1438456 dwellings compared with an actual of 1367661.
That is a 5% overestimate. Using the ratio estimator gives an estimate of 1364287. That
is a 0.2% underestimate. Secondly summary statistics for the dwelling weights (i.e. the
weights associated with selecting dwellings but not yet people) for the rate-up and ratio
estimators are given below and it can be seen that the ratio estimator has less variables
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weights. The impact on the design effect (deff) will be significant. Using the measure
considered by Kish, n

∑
i w

2
i /(

∑
i wi)

2, where wi is the weight for the ith dwelling and
n is the total number of dwelling in the sample, the component of the deff for sampling
dwellings for the rate-up estimator is 1.96 and for the ratio estimator 1.73: i.e. a reduction
of about 12%.

Dwelling weights

Using rate-up weights at 1st stage

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.83 109.60 201.60 288.30 375.00 2315.00

Using ratio weights at 1st stage

Min. 1st Qu. Median Mean 3rd Qu. Max.

20.17 110.70 210.20 273.50 368.00 1771.00

3 Final sample design weights

Summary statistics for final sample designs weights for an individual and an EFU are
given below.

Individual weight pfinwgt

Min. 1st Qu. Median Mean 3rd Qu. Max.

20.17 184.70 393.30 543.70 729.80 5313.00

EFU weight efinwgt

Min. 1st Qu. Median Mean 3rd Qu. Max.

20.17 123.90 254.60 365.20 481.00 5313.00

The large pfinwgts and efinwgts arise from Area Units which have very large number
of dwellings, which is why ppswor schemes are usually chosen in these situations. The
small pfinwgts and efinwgts arise from Area Units which have very small number of
dwellings and were in the original sample selected ppswor, so have a first stage selection
weight of 1.

4 Calibration weights

4.1 Potential areas of unrepresentativeness due to differential
nonresponse.

In the 2000 LSS for the working age population, to account for differential nonresponse
calibration was done to 2001 Census totals adjusted to the population count at March

9



2000.

The calibration cells used were:

• age × sex (18-24, then 5 year age groups)

• age × ethnicity (Māori / NonMāori)

• sex × ethnicity

• location × sex (Auckland, Wellington, Other Major Urban areas, Secondary/Minor
urban areas, rest)

• location × ethnicity

• age × location

There was also some comparison of other variables against the 1996 Census as a result
of which home ownership and salary or wages income variables were added. Again the
benchmarks came from the 2001 Census.

The 2004 LSS also had differential response rates with an overall response rate of
62.2%.

Comparison of the sample estimates with those from the 2001 Census showed that
there were substantial differences in proportions for several socio-demographic variables.

Table 2 compares sample estimates and 2001 Census usually resident percentages for
Age × Sex. The sample consistently overestimates the percentage of women except in the
≥ 65 age group.

Table 3 compares sample estimates and 2001 Census usually resident percentages for
Sex × Prioritized Ethnicity. Respondents were allowed to give up to three ethnic groups,
so the calibration cells could have some multiple ethnicities e.g. Māori-European, Māori-
Pasifika. However, given the overall sample size of 5000 and the need for largish cell sizes
to keep the variance of the estimator small, there is a need to collapse these multiple
ethnicities. Since there is an interest in the Māori population, there is a case to use the
prioritized ethnic groups, where anyone reporting Māori is classified as Māori, then anyone
reporting a Pasifika ethnic group is classified as Pasifika, etc.

The sample overestimates the percentage of Māori and European women and under-
estimates the percentage of Asian women. The Other group is too small to make a strong
inference.

Table 4 compares sample estimates and 2001 Census usually resident percentages for
Age× Prioritized Ethnicity. The sample varies considerably from the Census data in many
cells but particularly too many young Māori, too few young Europeans and possibly too
many young Asians.

Table 5 shows that there has been higher response rates in single Economic Family
Unit households and in multiple EFU households where the respondent is a couple with
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Table 2: Comparison of sample estimates and 2001 Census usually resident percentages
for Age × Sex.

18-24 25-34 35-44 45-54 55-64 ≥ 65

Census
Male 6.33 9.22 10.36 8.86 6.12 7.11
Female 6.36 10.17 11.12 9.12 6.29 8.93
Sample
Male 4.63 6.18 7.85 7.38 5.83 8.28
Female 7.5 10.9 13.83 11.16 8.04 8.41

Table 3: Comparison of sample estimates and 2001 Census usually resident percentages
for Sex × Prioritized Ethnicity.

Male Female

Census
Māori 5.18 5.77
Pasifika 2.1 2.3
Asian 2.73 3.21
Other 0.31 0.27
European 35.51 38.5
Missing 2.03 2.11
Sample
Māori 3.67 8.7
Pasifika 2.23 2.67
Asian 3.07 2.68
Other 1.6 2.13
European 29.42 43.55
Missing 0.11 0.17

no children. Particularly under-represented are single people with no children in multiple
EFU households. The estimates of Labour Force Status in the sample closely matched
the 2001 Census.

However, given the high proportion of missing responses in the 2001 Census for Wages
as Income Source and Home Ownership, little can be said about under or over represen-
tation in these variables of the sample estimates.

It seems likely that the ratio estimation at 1st stage has corrected regional (location)
imbalance.

Since the 2001 Census the New Zealand population has increased by around 5%, prin-
cipally due to migration. So calibration to 2001 census totals, would require adjustment
to the totals to account for this increase in population.

However, looking at the June 2004 provisional estimates of the population by age
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Table 4: Comparison of sample estimates and 2001 Census usually resident percentages
for Age × Prioritized Ethnicity.

18-24 25-34 35-44 45-54 55-64 ≥ 65

Census
Māori 2.21 2.91 2.61 1.63 0.93 0.65
Pasifika 0.9 1.22 0.99 0.64 0.36 0.27
Asian 1.28 1.33 1.52 0.97 0.48 0.35
Other 0.1 0.16 0.15 0.09 0.04 0.03
European 7.59 12.82 15.21 13.8 10 14.44
Missing 0.54 0.86 0.88 0.75 0.53 0.77
Sample
Māori 2.91 2.52 3.18 2.02 1.11 0.63
Pasifika 0.77 1.5 1.22 0.77 0.29 0.36
Asian 1.49 1.46 1.42 0.83 0.36 0.2
Other 0.49 0.58 0.97 0.79 0.47 0.43
European 6.45 10.94 14.88 14.04 11.64 15.02
Missing 0.03 0.07 0.02 0.1 0.01 0.05

and sex indicated some large changes in the proportions from the 2001 Census. Table 6
compares Provisional June 2004 population estimates and 2001 Census usually resident
percentages for Age× Sex. There have been some important shifts in the age sex structure.
The 55-64 age group has increased by about 0.5%, 25-34 old males have decreased by about
0.4% and 25-34 females by 0.8%. 18-24 year old males have increased by about 0.6%. It
might be thought that the use of current data would reduce the need for calibration but
as Table 7 shows, there is still considerable imbalance in the sample estimates.

Hence it was decided to use the provisional June 2004 estimates for calibration. Here
ethnicity is rather limited and what is available is Māori and Other. In any case because
ethnicity is not recorded on migration cards, the estimates for the Māori and Other
populations are not as reliable as for the total population. At the time calibration was
being carried out, the estimates were available for the Total population but not the ethnic
breakdown. A comparison was made between the June 2003 Māori estimates with the
year ending December 2003. The proportions in the 5 year age groups seemed stable.
Hence the June 2003 Māori proportions on the June 2004 data was used to produce
Age × Sex × Ethnicity calibration cells.

The initial age groups for calibration were the standard 5 year age groups, except for
the 15-19 age group where this group was split into 15-17 and 18-19, and the old, where
the 85 and older were formed into one group.

The reason for considering calibrating on children (those under 18) is that analysis
will be done on EFUs. There is some imbalance in the household structure, in particular
too many children, so there is need to calibrate.
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Table 5: Comparison of sample estimates and 2001 Census usually resident percentages
for estimated Economic Family Units.

Single EFU Multiple EFUs

Census
Couple no children 14.7 6.9
Couple with children 15.9 5.2
Single no children 9.9 38.8
Single with children 4.5 4.2
Sample
Couple no children 20.1 11.2
Couple with children 17.5 6.6
Single no children 14.1 20.6
Single with children 5.3 4.2

Table 6: Comparison of Provisional June 2004 population estimates and 2001 Census
usually resident percentages for Age × Sex.

June 2004 Census 2001
Males Females Males Females

18-24 6.90 6.61 6.33 6.36
25-34 8.81 9.37 9.22 10.17
35-44 10.05 10.74 10.36 11.12
45-54 8.84 9.06 8.86 9.12
55-64 6.64 6.75 6.12 6.29
65+ 7.17 9.04 7.11 8.93

4.2 Integrated weighting

Because one of the analysis units is the EFU, and because as argued above, there is a
need to calibrate both respondents and members of the respondent’s EFU (Family Group
1) and because members in Family Group 1 will typically have different ages, sexes or
ethnicities, they will end up with different weights, whereas they had the same sample
design weight.

In such situations, a common approach is to use integrated weighting, where some
adjustments are made to the calibrated weights so that all members in Family Group 1
have the same calibrated weight.

This is not straightforward for the method of calibration used last time (see below)
but turns out to be straightforward for the method used this time (see below).

Given that the respondent in Family Group 1 has a calibrated (and integrated) weight,
it would be natural to construct their weight (for when a respondent analysis is needed)
by taking the Family Group 1 calibrated weight and multiplying by the number of adults
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Table 7: Percentage differences in age groups between survey and provisional June 2003
population estimates.

male female

0-4 13.3 23.1
5-9 11.9 13.9
10-14 3.0 15.1
15-19 -9.0 -14.0
20-24 -30.3 -6.2
25-29 -25.7 -18.6
30-34 -14.1 5.3
35-39 -11.7 -2.6
40-44 -5.8 8.7
45-49 -21.1 -0.5
50-54 26.0 15.1
55-59 -6.1 13.9
60-64 2.6 10.2
65-69 2.5 1.9
70-74 8.8 9.6
75-79 13.9 -5.9
80-84 6.2 -32.0
85-89 -14.7 -59.0
90+ -65.2 -81.8

in Family Group 1. But as the results below show, this gave more extreme values to the
weights. This would impact on the overall design effect. Furthermore there were still
some imbalances, so it was decided to calibrate the respondents weight to the population
totals (of course for the 18+ population).

Finally, and again for reasons of minimizing the variability in weights (the sample sizes
were also too small in some groups), the age groups were collapsed as follows:

[0,10) [10,18) [18,25) [25,35) [35,45) [45,55) [55,65) [65,75) [75,100)

4.3 Calibration methodology

Some imputation for sex (1 missing value in Family Group 1 data) and age (36 missing
values in Family Group 1 and 15 missing values in respondent data) was necessary so that
everyone in the sample could get a calibrated weight. The approach taken with imputation
was either to construct a plausible value using other household members data: e.g. the age
of a female partner is usually less than that of a male partner) or the hot deck approach
where the information is borrowed form the next nearest person in similar household
structure.

The basic idea behind calibration is an adjustment of the weights derived from the

14



inverse of the inclusion probabilities. Call these the design weights dk = 1/πk. The
adjustment is made so that the new weights, call these wk, match known population
totals of certain auxiliary variables, e.g. age group or sex counts. But also the wk’s need
to be as close as possible to the dk’s. In effect the wk’s can be expressed in terms of what
are called g-factors as:

wk = gkdk or wk =
gk

πk

.

It is sensible to consider making the g-factors close to 1 by minimizing an appropriate
distance between 1 and the g-factors.

An example of a distance function is

N∑
k=1

hk(gk − 1)2, (1)

where hk is a known set of constants.

However, because when doing calibration a sample only is available, it is possible to
minimize only a sample version of this:∑

k∈s

hk

πk

(gk − 1)2,

so the g-factors are sample dependent. This could be rewritten as∑
k∈s

hk

dk

(wk − dk)
2.

This quantity is minimized subject to say∑
k∈s

wkxjk = txj
,

where xj is some auxiliary variable (e.g. a dummy variable which is 1 if the a respondent
is say a male aged 35-44, but 0 otherwise), and txj

is the exact total (e.g. population
count for males aged 35-44).

Using this distance measure,
∑

k∈s(hk/dk)(wk − dk)
2, there is an analytic solution to

the minimization problem, namely

wk =
[
1 +

[(
tX − t̂X

)′
(X ′WX)

−1
X ′W

]
k

]
dk, (2)

where tX is the vector of population totals for the auxiliary variables, t̂X is the estimate
of these totals from the sample, X is the matrix of auxiliary variables, W is a diagonal
(weight) matrix whose k, k element is dk/hk. Clearly the g-factor is the term in the outer
brackets on the right hand side.

It turns out that Equation 2 can be simplified if a certain technical condition holds2.
Roughly speaking the condition is that if weighting the auxiliary variables by the inverse

2Mary Thompson in her book Thompson (1997) calls this the XΣ condition.
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of hk there is a linear combination of these weighted variables which is constant on all
observations. This condition holds here.

With this condition holding Equation 2 simplifies to

wk =
[
t′X (X ′WX)

−1
X ′W

]
k
dk, (3)

This distance measure was used with hk = 1 for all k.

Last time, partly because incomplete multiway tables were used (e.g. Age × Sex and
Age × Ethnicity instead of Age × Sex × Ethnicity), and partly to ensure negative weights
did not occur, the method of calibration was the generalized raking ratio. The distance
measure corresponding to this is∑

k∈s

wk log

(
wk

dk

)
− wk + dk. (4)

The minimization problem with this distance measure does not have an analytic solution
but e.g. the iterative proportional fitting algorithm provides a rapid numerical answer.

See Deville and Särndal (1992), Deville et al. (1993), Lundström and Särndal (1999),
and Renssen and Martinus (2002) for details.

4.3.1 Integrated weighting

If dummy variables xg are constructed corresponding to the Age × Sex × Ethnicity cells,
(e.g.which is 1 if you are a Māori male aged 35-44), then for integrated weighting a new
variable, zg, is constructed as follows. For the kth member of the Family Group 1 sample

zg,k =
number in cell g in Family Group 1

number in Family Group 1
. (5)

Summing zg,k over a Family Group 1 gives the number of people in that Family Group
1 in calibration cell g, and summing zg,k over all Family Group 1’s gives the population
count for that cell.

See Lemâıtre and Dufour (1987) for details.

4.3.2 Summary of calibrated and integrated weights

Fortunately there are no negative weights which as mentioned above can be a potential side
effect of using the distance measure used. The table below gives the summary statistics
for the original design weights for respondent and EFU as well as the calibrated and
integrated weights summary statistics

pfinwgt original respondent weight
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Min. 1st Qu. Median Mean 3rd Qu. Max.

20.17 184.70 393.30 543.70 729.80 5313.00

cpfinwgt calibrated respondent weight

Min. 1st Qu. Median Mean 3rd Qu. Max.

18.26 194.20 417.30 600.10 803.40 6818.00

efinwgt original efu weight

Min. 1st Qu. Median Mean 3rd Qu. Max.

20.17 123.90 254.60 365.20 481.00 5313.00

cefinwgt calibrated and integrated efu weight

Min. 1st Qu. Median Mean 3rd Qu. Max.

14.05 127.90 261.10 396.70 499.50 6913.00

cefinwgt * # adults in efu

Min. 1st Qu. Median Mean 3rd Qu. Max.

14.05 194.00 423.90 600.10 804.70 10910.00

Note as mentioned above using the EFU calibrated weight multiplied by the number of
adults in the EFU produces more extreme weights than the calibrated respondent weight.

The impact of the calibration and integration is small the gk factors vary from around
.86 to 2.7 for respondent weight and .38 to 2.7 for EFU weight.

The large and small weights are typically due to the factors mentioned in Section 3
above, as well as differential response rates giving large or small calibration factors.

Note that for the respondent weight if an srswor of 4989 people 18+ was taken from
2993800 then the weight would be 600.08 which is, as expected, the same as the mean of
the calibrated respondent weight.

For the EFU weight the mean weight would be 396.71 if an srswor of 4989 EFUs was
taken from (an estimated) 1979200.

So the variability in weights is fairly high (for respondent the ratio of the 2.5% quantile
to 97.5% quantile is about 43, and for the EFU about 48.

However, the impact of the Kish deff measure (see Section 2 above) which looks at
variability in weights is not so pronounced. The calibration has a small effect as indicated
in the table below compared with the variability of the design weights.

deff efinwgt deff cefinwgt

2.03 2.26

deff pfinwgt deff cpfinwgt deff cefinwgt * # adults in efu

1.89 2.00 2.03
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A quick look suggests that household composition, regional estimates, etc look plau-
sible with the calibrated weights. The differences may well be changing demographics.

For example at Census 2001 estimated EFUs were 1.627 million, now the estimate is
1.979 million. This means in 3 years a reduction in EFU size from 2.32 people per EFU
to 2.05.

4.3.3 Controlling for EFU type

As MSD began producing tables for the report, it became clear that the proportions of
EFU type for the current survey were quite different to those from the previous survey.
Clearly factors such as the aging population, migration, and steady move over the last
decade to more single person EFUs and Couples without children would mean the propor-
tions would not be expected to be the exactly the same. Nevertheless, on balance these
factors did not seem likely to explain the observed differences.

So it was decided to calibrate on EFU type. The calibration totals were constructed
in a mixed fashion because there are no current populations counts for the population as
a whole.

For the 65 and over population, there is reliable administrative data using Guaranteed
Retirement income beneficiaries. From this data the following is known: the number of
couples, one or both of whom are over 65; the number of singles; and the number of
couples one of whom is in a non-private dwelling, e.g. resthome or hospital.

For the 18-64 population it decided to use the proportions at last Census applied to
the estimated number of EFUs from this survey.

The following table gives the calibration totals.

EFU type number percentage

single person resp < 65 163774 8.27

couple only resp < 65 242153 12.23

couple with children resp < 65 262112 13.24

single person with children < 65 74007 3.74

single person < 65 multiple efu 641331 32.40

couple only resp < 65 mutilple efu 113182 5.72

couple with children resp < 65 multiple efu 85837 4.34

single person with children < 65 multiple efu 68591 3.47

couple both >= 65 114178 5.77

couple resp >= 65 11019 0.56

single >= 65 203053 10.26

Here resp means respondent.

Because the EFU weights are estimating EFUs and respondent weights are estimating

18



the 18 and over population, it is not possible to calibrate in the one step using say
Equation 3. Instead, an iterative procedure similar to that used last time was used.

First the EFU type was calibrated using iterative proportional fitting (that is using the
distance measure Equation 4). In fact because the calibration cells are in fact a complete
one-way table there is no iteration. This amounts to the usual poststratification estimator.

Second the resulting EFU weight was applied to Family Group 1 members and then
the integrated weighting procedure used previously was carried out.

This procedure was iterated until a reasonably close fit was obtained between the
EFU type, age, sex, and ethnicity calibration totals. After 10 iterations there was a very
close fit. Specifically the EFU type was exact and the age, sex, and ethnicity percentage
differences less than 0.03%: see next table.

Percentage differences in age, sex, and ethnicty calibration cells for the

integrated EFU weight

maori other

m f m f

[18,25) 0.00 0 [18,25) 0.01 0.01

[25,35) 0.00 0 [25,35) 0.01 0.00

[35,45) 0.00 0 [35,45) 0.01 0.01

[45,55) 0.00 0 [45,55) 0.00 0.01

[55,65) 0.00 0 [55,65) 0.00 0.00

[65,75) 0.00 0 [65,75) -0.02 -0.02

[75,100) -0.01 0 [75,100) -0.01 -0.02

Finally, the respondent weight for the Family Group 1 respondent was constructed
by multiplying the integrated EFU weight by the number of adults in Family Group 1.
There is a reasonably close fit to the age sex ethnic calibration totals. The differences in
percentages are:

maori other

m f m f

[18,25) -0.04 0.04 [18,25) -0.16 0.05

[25,35) -0.08 0.07 [25,35) -0.33 0.09

[35,45) -0.06 0.13 [35,45) 0.12 0.13

[45,55) 0.02 0.06 [45,55) -0.13 0.20

[55,65) 0.02 0.03 [55,65) 0.33 -0.15

[65,75) 0.07 -0.11 [65,75) 0.15 -0.35

[75,100) 0.00 0.00 [75,100) -0.16 0.07

Recall that in the previous calibration constructing the respondent weight this way
produced large percentage differences and hence this respondent weight was recalibrated,
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thus destroying the simple relationship between the EFU weight for Family Group 1 and
the respondent weight.

Given the reasonably close fit, certainly well within sampling error, and the desire to
maintain that simple relationship it was decided not to recalibrate this weight.

In summary, the EFU weight is produced by an iterative procedure calibrating first
on EFU type then integrating the Family Group 1 members EFU weight to age, sex and
ethnicity totals. The respondent weight is the EFU weight times the number of adults in
the EFU.

The table below gives the summary statistics for the new calibrated and integrated
weights. It is clear that improving the estimates of the EFU type has come at the cost of
increased variability in the weights. Although the interquartile ranges are similar to the
previous weights, the tails, particularly the right hand one are longer.

calibrated and integrated EFU weight

Min. 1st Qu. Median Mean 3rd Qu. Max.

6.699 120.000 248.500 421.300 497.600 11590.000

calibrated and integrated respondent weight

Min. 1st Qu. Median Mean 3rd Qu. Max.

12.41 186.10 394.50 600.10 784.50 11590.00

5 Proposed method of variance estimation

Because for this survey:

• there is effectively a self-representing stratum of those AUs initially selected sppswor;

• because for the AUs selected srswor ratio estimation was used at the first stage
selection;

• calibration is used as a nonresponse adjustment method

it does not seem feasible nor realistic to use an analytic approach to calculate variances
for the variables estimated in this survey.

With such a design it is more natural to consider replicated methods such as the jack-
knife. This method will produce a set of jackknife weights. An additional benefit is that
the parameters estimated by modelling of the data can have standard errors calculated
taking account for the complex survey design.
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5.1 Jackknife variance estimation

Suppose there is an estimator θ̂ of some population parameter θ based on the full sample.
Suppose for the moment that the sample is not stratified. Then the jackknife technique
has the following steps.

1. Partition the sample of size n into K random groups of equal size m.

Assume that, for any given sample s each group is a simple random sample from
the sample s even if the sample s is not a simple random sample.

2. For each group k ∈ K, calculate θ̂[−k], an estimator of the same functional form as

θ̂ but based on the data omitting the kth group.

3. Define for each k ∈ K the kth pseudovalue:

θ̂k = Kθ̂ − (K − 1)θ̂[−k]

This is motivated by the case of the usual sample mean estimator where the sample
value Xi can be written as

Xi = nX̄ − (n− 1)X̄[−i]

where X̄ is the sample mean for the full sample, and X̄[−i] is the sample mean for
the sample with unit i omitted.

4. Form the jackknife estimator of θ (an alternative to θ̂)

θ̂JK =
1

K

K∑
k=1

θ̂k

Note that the difference between θ̂JK and θ̂ is called the jackknife bias.

5. Form the jackknife variance estimator:

V̂JK1 =
1

K(K − 1)

K∑
k=1

(θ̂k − θ̂JK)2

Note that given the definition of θ̂k this can be rewritten as

V̂JK1 =
K − 1

K

K∑
k=1

(θ̂[−k] − θ̄JK)2.

Essentially, this is the sum of squares of the jackknife estimators about their mean
θ̄JK .

The estimator V̂JK1 is used to estimate V (θ̂) as well as V (θ̂JK1). So
√

V̂JK1 can be
used to estimate the sampling error for the complex estimator under the complex design.
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If the θ̂k’s were uncorrelated then V̂JK1 would be unbiased for VJK . But in general
the θ̂k’s are correlated so unbiasedness doesn’t hold. There are no exact results for the
properties (bias variance, asymptotic distribution, etc) of the jackknife estimator and the
jackknife variance estimator for complex estimators, but empirical evidence suggest that
it gives good estimates of sampling errors for many complex statistics.

A more conservative estimator is

V̂JK2 =
K − 1

K

K∑
k=1

(θ̂[−k] − θ̂)2, (6)

essentially the sum of squares of the jackknife estimators about the estimator θ̂, i.e. the
mean square error.

Finally, for generalized regression estimators (such as the calibrated estimator used
here) the jackknife estimator can be reduced to a set of jackknife weights which can be
calculated once and then applied to any variable.

For multistage sampling the random groups for the jackknife technique are usually
the primary sampling units (psus) (in this case Area Units) and typically the estimators
are nonlinear functions of the (unbiased) psu totals. However, practical sample designs
for household typically have many psus ( in this case 522 in total) and so the number
of jackknife replicates becomes large. Whilst this is generally not a problem now that
computers are powerful, it is usual to use groups of psus.

It is well known that one has to be careful when applying the jackknife to stratified
designs (see e.g. Wolter (1985) page 175).

A common method (see Rust (1985)) is to apply the jackknife technique at the stratum
level and then combine the estimates using independence of stratum samples as in the
usual Horvitz-Thompson estimator. Where a design is highly stratified such as this (There
are 54 TNS regions plus the self representing stratum), even with grouping of psus, this
lead to a large number of replicates.

More typically now the method is to delete a psu or groups of psus in one stratum at
a time while keeping the remaining strata fixed. See Rust and Rao (1996).

5.2 Delete-a-group-jackknife

An alternative approach is to form the groups of psus across strata. Specifically, the psus
are formed into a list ordered by stratum and randomly within strata. Groups are then
formed by systematically selected psus down the list with a constant sampling interval.

With a small number of strata this can reduce the number of replicates considerably
whilst not increasing the bias of the variance estimate This method typically has a bias
bounded by

K − 1

K
min

h

1

nh − 1
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where K is the number of groups. With K reasonably large, this term is dominated by
minh

1
nh−1

. Since the largest srswor sample comes from the TNS region Auckland Central
Zone and is 45, the upper bound on the bias in the sampling error would be about
15%. Given, that there are other biases unaccounted for in the sampling errors, having a
conservative estimator like this is probably sensible so that real differences are correctly
reported.

See Kott (1998a), Kott (1998b) and Kott (2001) for details.

Where the original sample has been selected by systematic probability proportional
to size scheme, this approach is similar to the random group estimator proposed for such
designs (see Wolter (1985) page 288.)

Harry Smith (see Smith (2001)) investigated this approach for the Household Labour
Force Survey which is highly stratified with 120 strata and found that even a delete-a-
group-jackknife with as few as 40 groups produced acceptable variance estimates.

This method was used for SNZ’s Disability survey run after the 2001 Census of Pop-
ulation and Dwellings. This has also been used in the 2003 Physical Health Survey.

Therefore, it was decided that this delete-a-group-jackknife be used to estimate the
sampling errors and deffs for the LSS.3

5.3 Delete-a-group-jackknife for the LSS

The choice for the numbers of groups was as follows.

• There are 522 AUs and this factors into 18 × 29, so if unequal sized groups and
possibly boundary effects in the systematic sampling are to be avoided, 18 or 29 are
the choices for the group size.

• In the major urban areas the TNS regions typically have at least 18 AUs selected
in the srswor sample, so choosing 18 would mean each group has at least one major
urban area AU deleted. This should provide good balance.

The conservative estimator

V̂JK2 =
K − 1

K

K∑
k=1

(θ̂[−k] − θ̂)2,

was chosen.

3Subsequent discussions with Robert Templeton of MSD, who implemented the jackknife estimation
and carried out a quality check on its performance suggest that there is a reduction in variance for some
subpopulations when more replicates are used. This has to be traded off against ease of analysis and
modelling.
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5.3.1 Algorithm for producing jackknife weights

This algorithm is designed for the SAS datasets which were available at the time sampling
errors were to be produced. Clearly it could be modified for other software.

1. Order the strata as follows:

(a) Self-representing.

(b) Major Cities: Northern Auckland Zone, . . . , Hamilton, . . . , Porirua Zone, . . . ,
Christchurch, Dunedin.

(c) Minor Cities: Whangarei, Tauranga, Rotorua, Gisborne, Napier, Hastings,
New Plymouth, Palmerston North, Wanganui, Nelson, Timaru.

(d) remaining Upper North Island.

(e) remaining Lower North Island.

(f) remaining South Island.

2. Randomly order the AUs within strata.

3. Identify the 18 (or number of replicates) systematic samples through the strata. For
each sample, work out the number of AUs deleted in each TNS region.

4. For the AU sample of self representing strata, rrpps, if the AU is in the kth sys-
tematic sample delete it. Then work out the AU weight:

w =
77

77− n[−k]

,

where n[−k] is the number of AUs deleted in the kth systematic sample. Now work
out the dwelling weight which accounts for nonresponse at the AU level.

dwgt = w × Mi

mi

,

where Mi is the number of occupied dwellings at 2001 Census in the ith AU and mi

is the number of responding dwellings.

For the AU samples in TNS-region strata, rrsrs, if the AU is in the kth systematic
sample the delete it. Then work out the AU inverse of selection probability weight:

wh[−k] =
Nh

nh − n[−k]

,

where Nh is the total number of AUs in stratum h, and nh is the number TNS
sampled. As before nh[−k] is the number of AUs deleted in the kth systematic
sample, in stratum h. Note in the file rrsrs Nh and nh are called Nh and nh

respectively.

Then work out the design weight which is

dh =

∑
Nh

Mhi∑
i6∈[−k] Mhi

.
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So the key here is to work out for each replicate sample (the complement of the
systematic sample, denoted by i 6∈ [−k] in the formula above) the sum of occupied
dwellings.

Now work out the dwelling weight which accounts for nonresponse at the AU level.

dwgt = dh ×
Mhi

mhi

,

where Mhi is the number of occupied dwellings at 2001 Census in the ith AU in the
hth stratum, and mhi is the number of responding dwellings.

5. Using a subset of the respondent file which has variables:

• identifier for respondent,

• any variable used for calibration,

• number of adults in household

• number of EFUs in household

merge with the two AU files and work out the pfinwgt and efinwgt.

pfinwgt = dwgt× na
hij

where ne
hij is the number of adults in respondent j’s household. Similarly,

efinwgt = dwgt× ne
hij

where ne
hij is the number of EFUs in respondent j’s household.

6. Create a family Group 1 file which has all the members in Family Group 1, with
the variables

• identifier for respondent assigned to each member of Family Group 1,

• any variable used for calibration,

• number of adults in Family Group 1

• number of children in Family Group 1

• efinwgt

7. Do calibration on the Family Group 1 file including integration using efinwgt. This
is an iterative procedure.

(a) Adjust efinwgt so that calibrates to the EFU type totals. Simply construct
the appropriate 1-way table using efinwgt and for each cell i, work out the
factor fi = ti/

∑
j∈i efinwgtj. Apply this factor to all efinwgt’s belonging to

cell i.

(b) Using this new efinwgt do the integrated weighting on Family Group 1.

This involves constructing a design matrix X from dummy variables corre-
sponding to the calibration cells and totals as outlined in Section 4.3 and in
particular Equation 2 and Equation 5. Note that is SAS the weight matrix W
is implemented in regression procedures e.g. PROC REG by using the WEIGHT

statement.
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Iterate until the age sex ethnic totals are close to the calibration totals. Some judge-
ment is required here. Probably if there is less than 0.1% difference the iteration
can stop.

Call this weight cefinwgtk where k indicates the kth systematic sample which was
deleted. This is then, the kth jackknife or replicated weight. Merge this weight back
onto the main respondent file. For the respondents in the deleted AUs cefinwgtk

will be missing in a SAS merge. These can be set to zero so that other software
which does not handle missing values can use these weights.

8. Construct the respondent weight by multiplying cefinwgtk by the number of adults
in Family Group 1. Call this weight cpfinwgtk where k indicates the kth systematic
sample which was deleted. Merge this weight back onto the main respondent file.

5.3.2 Producing sampling error estimates

Given the K = 18 jackknife or replicate weights the sampling errors for any variable is
estimated using the method outlined in Section 5.1 and in particular Equation 6. The
sampling error is the square root of this which then can be multiplied by whatever z-value
corresponds to the desired confidence level to produce a half width confidence interval.

26



References

Bethlehem, J. G. and Keller, W. J. (1987). Linear Weighting of Sample Survey Data.
Journal of Official Statistics, 3(2):141–153.

Cochran, W. G. (1977). Sampling Techniques. John Wiley and Sons, Inc., New York, 3rd
edition.

Deville, J.-C. and Särndal, C.-E. (1992). Calibration Estimators in Survey sampling.
Journal of the American Statistical Association, 87(418):376–382.

Deville, J.-C., Särndal, C.-E., and Sautory, O. (1993). Generalized Raking Procedures in
Survey sampling. Journal of the American Statistical Association, 88(423):1013–1020.

Kish, L. (1995). Methods for design effects. Journal of Official Statistics, 11(1):55–77.

Kott, P. S. (1998a). Using the Delete-A-Group Jackknife Variance Estimator in NASS
surveys. NASS Research Report RD-98-01, Research Division, National Agricultural
Statistics Service, U.S. Department of Agriculture, Washington, DC. Revised July
2001.

Kott, P. S. (1998b). Using the delete-a-group jackknife variance estimator in practice. In
ASA Proceedings of the Survey Research Methods Section, pages 763–768.

Kott, P. S. (2001). The Delete-A-Group Jackknife. Journal of Official Statistics,
17(4):521–526.
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